The design and development of an effective support system for tabular stopes in gold and platinum mines

R. Ottermann, D. Burger & A. von Wielligh

Research agencies: CSIR: Division of Mining Technology
University of Pretoria

Project number: GAP 708

Date: September 2000
Executive Summary

Rock mass instabilities represent the single largest cause of injuries and fatalities suffered by the workforce in South African gold and platinum mines. The majority of rock-related fatalities (± 56 per cent) occur in the immediate vicinity of the stope face. Relatively few fatalities (< 5 per cent) are associated with the back areas. The strike gully is associated with the second highest number of fatalities (15 per cent).

Stope support systems, typically consisting of combinations of tendons, props and packs or backfill, are used to stabilise the rock mass surrounding excavations and reduce the risk of rockfalls and rockbursts.

In response to the rock-related hazard, a significant research thrust was, and continues to be, directed at stope support, to combat the hazards of rockfalls and rockbursts. In spite of a considerable amount of research effort focused in the area of improved stope support, the trend in fatality rates over the past ten years has shown only a marginal improvement. It is, therefore, unlikely that conventional support systems, as currently used, will result in a significant improvement in accident rates. New, alternative support systems and technologies are required to significantly reduce the rock-related hazards associated with underground mining operations.

The objective of Phase I of SIMRAC Project GAP 708 is to develop a support system concept that addresses the deficiencies in current stope support systems, and that will significantly reduce fatalities in the stope face area in the short to medium term.

In order to achieve the objective, the deficiencies of current stope support systems were identified and include (i) poor area cover, (ii) poor installation practices, and (iii) poor face area support during cleaning (almost 50 per cent of all stope fatalities involve people whose activity at time of incident is related to cleaning or making safe).

Any successful alternative stope support system would have to comply with certain rock engineering and operational requirements related to gold and platinum mining. The more important rock engineering requirements relate to the support resistance and energy absorption requirements, support/rock contact stresses (to prevent punching), yieldability of support, velocity of dynamic closure, post-rockburst stoping widths and the need for better areal coverage. The operational requirements include flexibility in terms of varying stoping widths, faults and reef rolls, ease of handling, and blast resistance. Another important operational consideration is that the system should not interfere with the scraper.

It is also vital that any alternative support system should offer protection to workers during all phases of the production cycle, i.e. drilling, charging, cleaning, making safe and face preparation. It is further important to integrate the application and use of alternative support technologies into the production cycle. Thus, the proposed support system should take into account the space requirements and other factors related to barring, cleaning, drilling and blasting operations.

Eleven alternative concepts were developed by means of reviews, workshops and brainstorming sessions. The following systems are described and evaluated:

- Rockbolt Reinforcement System
These concepts were evaluated in terms of rock engineering and operational requirements, and a rating system (using current stope support systems as a benchmark) was devised to determine the relative merits of the different systems. The rating system is based on the likely improvement in safety due to the introduction of the system (reduction in fatalities and injuries in the face area), the practicality of the system (its ability to function in the difficult, varying conditions typically encountered in gold and platinum mines) and the research and development requirements (to get the system to a point where it can be widely implemented in South African gold and platinum mines).

Based on the above evaluation procedure, the following three systems are recommended:

- Remotely Advanced Headboard System
- Rockbolt Reinforcement System
- Longhole Drilling System

The longhole drilling mining method has been used successfully (e.g. Telfer, Australia), but requires a planar orebody, with relatively few reef rolls or faults dislocating the orebody. This system may thus be applied successfully only in certain geotechnical areas or conditions. The system will result in a substantial reduction in rock-related stope face fatalities and injuries, as people are not required to enter the stope face area.

The rockbolt reinforcement system requires more research and development, so that the effect of such a system on the stability of the hangingwall can be quantified. This system, however, is highly flexible and will not require any modification to current mining methods.

The remotely advanced headboard system is flexible, and will result in a substantial
improvement in worker safety. Furthermore, this system has the potential to be implemented in most gold and platinum mines, without requiring modifications to current mining methods, and it is cost effective. It is thus anticipated that this system will be ready for large-scale manufacture and implementation within the next two years.

Detailed costing and planning of Phase II of SIMRAC Project GAP 708 was also carried out for the three recommended systems.
Acknowledgements

The authors would like to express their gratitude to the Safety in Mines Research Advisory Committee (SIMRAC) for financial support of project GAP 708 (Phase I).

The authors are indebted to A. J. Jager, J. A. Ryder and S. M. Rupprecht for their guidance and valuable technical contributions.
Table of contents

1. **Introduction**
 1.1 Background
 1.2 Scope of project
2. **Rock engineering specifications for the proposed stope support system**
 2.1 Introduction
 2.2 Support requirements for quasi-static conditions (rockfall conditions)
 2.3 Support requirements for dynamic conditions (rockburst conditions)
 2.4 Areal coverage
 2.5 Spacing between support units

Executive Summary

Acknowledgements

Table of contents

List of figures

List of Tables

1

1.1

1.2

2

2.1

2.2

2.3

2.4

2.5
2.6 Support-hangingwall contact stresses

2.7 Summary

3 Operating specifications for the proposed stope support system

3.1 Introduction

3.2 Safety of workers

3.3 Integration into the production cycle

3.4 Handling

3.5 Support installation and removal

3.6 Resistance to blast damage

3.7 Reef geometry

3.7.1 Reef thickness (stope width)

3.7.2 Dip of reef

3.7.3 Faults and roll of reef

3.8 Production system

3.8.1 Flow of ventilation

3.8.2 Productivity

3.9 Summary

4 International literature review of support methods used in stoping tabular
orebodies

4.1 Introduction

4.2 Support methods used in stoping tabular deposits in South African metal mines

4.2.1 Support used under quasi-static conditions in the stope face area

4.2.2 Support used under rockburst conditions in the stope face area

4.2.3 Support used under quasi-static conditions in the stope back area

4.2.4 Support used under rockburst conditions in the stope back area

4.2.5 Mining without back area support

4.2.6 Areal coverage

4.2.7 Summary of support methods used in stoping tabular orebodies in South African gold and platinum mines

4.3 Support methods used in stoping tabular deposits in South African coalmines

4.3.1 Introduction

4.3.2 Roofbolt support in South African collieries

4.3.3 Powered support systems used in coalmining

4.4 Support methods used in stoping tabular deposits outside South Africa
4.4.1 Neves Corvo Mine, Portugal

4.4.2 McArthur River Mine, Australia

4.5 Conclusions

5 Stope support concepts and evaluation

5.1 Introduction

5.1.1 Safety

5.1.2 Practicality

5.1.3 Research and development requirements

5.2 High pressure stope

5.2.1 Concept description

5.2.2 Concept evaluation

5.2.3 Discussion

5.3 Pneumatic support system

5.3.1 Concept description

5.3.2 Concept evaluation

5.3.3 Discussion

5.4 Powered shields

5.4.1 Concept description
5.4.2 Concept evaluation... Error! Bookmark not defined.

5.4.3 Discussion... Error! Bookmark not defined.

5.5 Safety cell ... Error! Bookmark not defined.

5.5.1 Concept description.. Error! Bookmark not defined.

5.5.2 Concept evaluation... Error! Bookmark not defined.

5.5.3 Discussion... Error! Bookmark not defined.

5.6 Remote miner .. Error! Bookmark not defined.

5.6.1 Concept description.. Error! Bookmark not defined.

5.6.2 Concept evaluation... Error! Bookmark not defined.

5.6.3 Discussion... Error! Bookmark not defined.

5.7 Modified spiling system Error! Bookmark not defined.

5.7.1 Concept description.. Error! Bookmark not defined.

5.7.2 Concept evaluation... Error! Bookmark not defined.

5.7.3 Discussion... Error! Bookmark not defined.

5.8 Walking beam wishbone support system Error! Bookmark not defined.

5.8.1 Concept description.. Error! Bookmark not defined.

5.8.2 Concept evaluation... Error! Bookmark not defined.

5.8.3 Discussion... Error! Bookmark not defined.
5.9 Twin beam support system Error! Bookmark not defined.
5.9.1 Concept description Error! Bookmark not defined.
5.9.2 Concept evaluation Error! Bookmark not defined.
5.9.3 Discussion ... Error! Bookmark not defined.
5.10 Rockbolt reinforcement Error! Bookmark not defined.
5.10.1 Concept description Error! Bookmark not defined.
5.10.2 Concept evaluation Error! Bookmark not defined.
5.10.3 Discussion ... Error! Bookmark not defined.
5.11 Longhole drilling Error! Bookmark not defined.
5.11.1 Concept description Error! Bookmark not defined.
5.11.2 Concept evaluation Error! Bookmark not defined.
5.11.3 Discussion ... Error! Bookmark not defined.
5.12 Remotely advanced headboard support system Error! Bookmark not defined.
5.12.1 Concept description Error! Bookmark not defined.
5.12.2 Concept evaluation Error! Bookmark not defined.
5.12.3 Discussion ... Error! Bookmark not defined.
5.13 Evaluation of concepts Error! Bookmark not defined.
6 Planning of detailed design, manufacturing and testing of recommended stope support systems Error! Bookmark not defined.
6.1 Introduction

6.2 Remotely advanced headboard system

6.2.1 Detailed design of the remotely advanced headboard system

6.2.2 Testing of the system

6.2.3 Training

6.2.4 Phase II schedule

6.3 Detailed requirements for the development of the rockbolt reinforcement system

6.3.1 Research requirements

6.3.2 Other components

6.3.3 Training

6.3.4 Phase II schedule

6.4 Detailed requirements for the development of the longhole drilling mining method

7 Conclusions and recommendations

References

Appendix A
A Quantifying stable hangingwall spans between support units (modified after Daehnke et al., 1998)

A1 Hangingwall beam buckling

A2 Shear failure by slip at the abutments

Appendix B

B Concept evaluation tables

B1 Introduction

B2 Rockbolt reinforcement

B2.1 Concept evaluation

B3 Modified spiling system

B3.1 Concept evaluation

B4 Twin beam support system

B4.1 Concept evaluation

B5 Mobile Stope Face Shield

B5.1 Concept evaluation

B6 Walking beam

B6.1 Concept evaluation

B6.2 Discussion
B7 High Pressure Stope .. Error! Bookmark not defined.

B7.1 Concept evaluation .. Error! Bookmark not defined.

B8 Pneumatic support Error! Bookmark not defined.

B8.1 Concept evaluation .. Error! Bookmark not defined.

B8.2 Discussion .. Error! Bookmark not defined.

B9 Safety cell ... Error! Bookmark not defined.

B9.1 Concept evaluation .. Error! Bookmark not defined.

B10 Longhole drilling .. Error! Bookmark not defined.

B10.1 Concept evaluation .. Error! Bookmark not defined.

B10.2 Discussion .. Error! Bookmark not defined.

B11 Remote miner ... Error! Bookmark not defined.

B11.1 Concept evaluation .. Error! Bookmark not defined.

B12 Powered shields ... Error! Bookmark not defined.

B12.1 Concept evaluation .. Error! Bookmark not defined.

Appendix C .. Error! Bookmark not defined.

C Minutes of the Workshop Held at Miningtek on Monday, 29 May 2000 Error! Bookmark not defined.
List of figures

Figure 1.1.1 Location of rock-related fatalities in SA gold mines.

Figure 1.1.2 Rockburst and rockfall related fatalities during the period 1990 to 1997.

Figure 1.1.3 Total rock related fatalities normalised with respect to square metres mined, number of workers, and ton of gold produced.

Figure 2.2.1 Rockfall support design procedure (modified after Daehnke et al., 2000).

Figure 2.3.1 Conceptual model of dynamic hangingwall displacement and associated energy absorption requirements of the support system (after Daehnke et al., 1998).

Figure 2.3.2 Quasi-static and dynamic force-deformation behaviour of a support unit prior and during a rockburst (after Daehnke et al., 1998).

Figure 2.3.3 Support resistance/energy absorption versus closure.

Figure 2.3.4 Flow chart showing features of the rockburst support design methodology (modified after Daehnke et al., 1998).

Figure 3.4.1 The effect of prop mass on the physical effort required to install a prop (modified after Van Rensburg et al., 1991).

Figure 3.7.1 Strike section of a stope showing a possible reef roll or fault.

Figure 4.2.1 Typical pack-based support system (rockfall control only), integrated with rockbolts in the upper section (after Jager and Ryder, 1999).

Figure 4.2.2 Typical shallow mining support layout utilising timber sticks, packs and crush pillars (after Jager and Ryder, 1999).

Figure 4.2.3 A backfill stope system employing three rows of hydraulic props (after Jager and Ryder, 1999).
Ryder, 1999).

Figure 4.2.4 A support system for cave mining (after Jager and Ryder, 1999).

Figure 4.3.1 Roofbolt reinforcement mechanisms used in coalmines.

Figure 4.3.2 Layout of frame support.

Figure 4.3.3 Chock support.

Figure 4.3.4 (a) $2F_{V/4200.75}$ shield, and (b) $4V/500_{0.8}$ shield.

Figure 4.3.5 $4V/600_{0.85}$ chock shield.

Figure 4.4.1 Transverse geological section through the Corvo and Graca Neves mine, Portugal (after Bailey & Hodson 1991).

Figure 4.4.2 (a) Typical drift-and-fill layout plan, and (b) Vertical section showing mining and filling sequence, Neves Corvo mine, Portugal (after Bailey and Hodson, 1991).

Figure 5.2.1 Schematic of high pressure stope concept.

Figure 5.2.2 Schematic of high pressure stope concept, allowing direct access to stope face.

Figure 5.2.3 Details of membrane ribbing to maintain a positive pressure differential across the membrane.

Figure 5.2.4 Schematic illustrating membrane supporting loose hangingwall rock.

Figure 5.2.5 Modular elements facilitating the installation of the membrane.

Figure 5.2.6 Drill, blast and cleaning cycle associated with the high pressure stope support system.

Figure 5.3.1 Pneumatic support.
Figure 5.4.1 Schematic of the Mobile Stope Support System (MSSS).

Figure 5.5.1 The safety cell.

Figure 5.6.1 Plan view of stope.

Figure 5.7.1 Section view of spiling system.

Figure 5.7.2 Plan view of spiling system.

Figure 5.7.3 Modified spiling system.

Figure 5.8.1 Wishbone support system.

Figure 5.8.2 Placement in stope.

Figure 5.8.3 Preliminary dimensions of the support system (in mm).

Figure 5.8.4 Beam and pneumatic tube (dimensions in mm).

Figure 5.8.5 Wishbone support (dimensions in mm).

Figure 5.8.6 Cleaning area available.

Figure 5.8.7 Barring with worker in protected area.

Figure 5.8.8 Drilling while in protected area.

Figure 5.8.9 Roll of reef.

Figure 5.8.10 Backfill barricade.

Figure 5.8.11 Moving of support forward.

Figure 5.8.12 Drill rail fitted to system.

Figure 5.8.13 Scraper rope attachment.
Figure 5.8.14 Blast barricade attachment. .. Error! Bookmark not defined.

Figure 5.9.1 Photograph of the constructed twin beam support system prototype. Error! Bookmark not defined.

Figure 5.9.2 Advancing the twin beam support system.......... Error! Bookmark not defined.

Figure 5.9.3 Extension to conventional hydraulic prop. Error! Bookmark not defined.

Figure 5.9.4 Side view of the twin beam support system in normal operating position. Error! Bookmark not defined.

Figure 5.9.5 Rear side view of the twin beam support system in normal operating position. Error! Bookmark not defined.

Figure 5.10.1 Section of stope supported by short rockbolts....... Error! Bookmark not defined.

Figure 5.11.1 Plan view and section of the longhole drilling method. Error! Bookmark not defined.

Figure 5.12.1 Schematic indicating the principal components of the remotely advanced headboard system.. Error! Bookmark not defined.

Figure 5.12.2 Back section view of the remotely advanced headboard system being advanced. Note that the system makes use of self-retracting hydraulic props. Error! Bookmark not defined.

Figure 5.12.3 Side section view of the remotely advanced headboard system being advanced, showing relative flexibility of H-Section headboards. Error! Bookmark not defined.

Figure 5.12.4 Position of the remotely advanced headboard system immediately before the blast. ... Error! Bookmark not defined.

Figure 5.12.5 Attachment of blasting barricade to the front edge of the support system. The scraper rope is placed behind the barricade to prevent damage during blasting. Before scraping commences the scraper rope is pushed over the top of the blasting barricade. .. Error! Bookmark not defined.

Figure 5.12.6 Position of the remotely advanced headboard system immediately after the blast. Error! Bookmark not defined.

Figure 5.12.7 Moving the remotely advanced headboard system (Step I). Error! Bookmark not
defined.

Figure 5.12.8 Moving the remotely advanced headboard system (Step II).

Figure 5.12.9 Moving the remotely advanced headboard system (Step III).

Figure 5.12.10 Commencing mining operations (barring, drilling, charging, installing permanent support).

Figure 5.12.11 Photographs of safety net installed underground between elongate props.

Figure 5.12.12 The safety net used in conjunction with the remotely advanced headboards.

Figure 5.12.13 Details of the advancing mechanism.

Figure 5.12.14 Virtual reality simulation.

Figure 5.12.15 Back view of the system with rubber barrels as pre-stressing devices.

Figure 5.12.16 Side view of the system with rubber barrels as pre-stressing devices.

Figure 5.12.17 Schematic of the drill rig boom, showing movement past the remotely advanced headboard support system.

Figure 5.12.18 Monthly support cost comparison between the remotely advanced headboard- and pre-stressed elongate support systems.

Figure 5.13.1 Visual representation of the scoring system.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Percentage of total rock related fatalities according to location, rockburst and rockfall.</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Fallout thickness for the various reefs at 95 % frequency level.</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Ejection thickness for the various reefs at 95 % frequency level and the associated energy absorption criteria.</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Summary of rock engineering requirements of a support system.</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Summary of reef geometry parameters (after Daehnke et al., 1998).</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Summary of average production statistics (after Daehnke et al., 1998).</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Summary of operating specifications of a support system.</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Summary of temporary and permanent support systems used in South African gold and platinum mines.</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Practicality rating of the high pressure stope system.</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Critical requirement evaluation of the pneumatic support system.</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Practicality rating of powered shields.</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Critical requirement evaluation of the safety cell.</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Critical requirement evaluation of the remote miner.</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Practicality rating of the spiling systems.</td>
</tr>
</tbody>
</table>
Table 5.8.1 Critical requirement evaluation for the walking beam wishbone support system.

Table 5.9.1 Critical requirement evaluation for the twin beam support system.

Table 5.10.1 Critical requirement evaluation for rockbolt reinforcement system.

Table 5.11.1 Critical requirement evaluation for the longhole drilling mining method.

Table 5.12.1 Critical requirement evaluation of the remotely advanced headboard system.

Table 5.12.2 Estimated cost of single unit.

Table 5.12.3 Support cost assumptions.

Table 5.13.1 Rating system.

Table 5.13.2 System ratings and scores.
References

Tarr, R.G. 2000. Personal communication during workshop held at CSIR: Division of Mining Technology, Carlow Road, Melville, Johannesburg.

Van den Heever, P. 2000. Personal communication during workshop held at CSIR: Division of Mining Technology, Carlow Road, Melville, Johannesburg.

Vieira, F.M.C.C. 2000. Personal Communication. CSIR: Division of Mining Technology, Carlow Road, Melville, Johannesburg, South Africa.
